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Key Points: 17 

• A new method to capture regional changes of isoprene drought stress is implemented for 18 
global usage in NASA GISS ModelE and is evaluated at the MOFLUX Ameriflux site 19 
located in Missouri. 20 

• The inclusion of isoprene drought stress from 2003-2013 leads to a ~2.7% reduction in 21 
global decadal average of isoprene emissions in ModelE with up to ~20% reduction in 22 
drought-stricken regions. 23 

• The model-tuned parameterization of isoprene drought stress reduces the overestimation 24 
of ΩHCHO in the southeastern U.S and improves simulated O3 during drought periods. 25 
 26 

Abstract. Drought is a hydroclimatic extreme that causes perturbations to the terrestrial 27 
biosphere, and acts as a stressor on vegetation, affecting emissions patterns. During severe 28 
drought, isoprene emissions are reduced. In this paper, we focus on capturing this reduction 29 
signal by implementing a new percentile isoprene drought stress (𝑦𝑦𝑑𝑑) algorithm in NASA GISS 30 
ModelE based on the MEGAN3 (Model of Emissions of Gases and Aerosols from Nature 31 
Version 3) approach as a function of a photosynthetic parameter (Vc,max) and water stress (𝛽𝛽) . 32 
Four global transient simulations from 2003-2013 are used to demonstrate the effect without 𝑦𝑦𝑑𝑑 33 
(Default_ModelE) and with online 𝑦𝑦𝑑𝑑 (DroughtStress_ModelE). DroughtStress_ModelE is 34 
evaluated against the observed isoprene measurements at the Missouri Ozarks Ameriflux 35 
(MOFLUX) site during the 2012 severe drought where improvements in correlation coefficient 36 
indicate it is a suitable drought stress parameterization to capture the reduction signal during 37 
severe drought. The application of 𝑦𝑦𝑑𝑑 globally leads to a decadal average reduction of ~2.7% 38 
which is equivalent to ~14.6 Tg yr-1 of isoprene. The changes have larger impacts in regions such 39 
as the Southeast U.S.. DroughtStress_ModelE is validated using satellite ΩHCHO column from 40 
the Ozone Monitoring Instrument (OMI) and surface O3 observations across regions of the U.S. 41 
to examine the effect of drought on atmospheric composition. It was found the inclusion of 42 
isoprene drought stress reduced the overestimation of ΩHCHO in Default_ModelE during the 43 
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2007 and 2011 southeastern U.S. droughts and lead to improvements in simulated O3 during 44 
drought periods. We conclude that isoprene drought stress should be tuned on a model-by-model 45 
basis, because the variables used in the parameterization responses are relative to the land 46 
surface model hydrology scheme (LSM) and the effects of 𝑦𝑦𝑑𝑑 application could be larger than 47 
seen here due to ModelE not having large biases of isoprene during severe drought. 48 
 49 
Plain Language Summary: Severe drought stresses vegetation and causes reduced emission of 50 
isoprene. We study the impact of including a new isoprene drought stress (𝑦𝑦𝑑𝑑) parameterization 51 
into NASA GISS ModelE called (DroughtStress_ModelE), which is specifically tuned for 52 
ModelE. Inclusion of 𝑦𝑦𝑑𝑑 leads to better simulated isoprene emissions at the MOFLUX site 53 
during the severe drought of 2012, reduced overestimation of OMI satellite ΩHCHO 54 
(formaldehyde column) and improved simulated O3 (ozone) during drought.  55 
 56 
1. Introduction    57 

In present day conditions terrestrial ecosystems release about 1000 Tg C yr-1 of biogenic 58 
volatile organic compounds (BVOCs) into the atmosphere and there is an additional smaller 59 
emission from marine ecosystems (Guenther et al. 2012). The majority of BVOCs emitted from 60 
vegetation are isoprene and monoterpenes (Guenther et al. 2006; Guenther et al. 2012). 61 
Representing over half of emitted BVOCs, isoprene is the dominant species globally with 62 
reported ranges of 440-600 Tg C yr-1 (Guenther et al. 2012) with high emission factors from 63 
some, but not all, broadleaf trees including species of oak, willow, palm oil, and eucalyptus 64 
(Benjamin et al. 1996; Geron et al. 2000). Isoprene is produced from carbon substrates generated 65 
during photosynthesis and contributes to abiotic stress tolerance from water and temperature 66 
stress (Loreto and Sharkey 1990; Monson et al. 2021). Isoprene emissions peak during warm, 67 
sunnier months of the growing season (MAR-OCT) (Opacka et al. 2021). Isoprene has a 68 
chemical lifetime of approximately one hour via oxidation by the hydroxyl radical (OH), 69 
producing organic aerosols and oxidation products that contribute to ozone (O3) formation 70 
(Carlton et al. 2009). Biogenic isoprene emissions affect atmospheric composition and climate, 71 
and in turn depend on drivers including light, temperature, photosynthetically active radiation 72 
(PAR), leaf area index (LAI), water stress, ambient O3, and CO2 concentrations. Climate change-73 
related higher temperatures and CO2 concentrations are separately expected to increase 74 
emissions of BVOCs, which will impact tropospheric ozone and secondary organic aerosols 75 
(SOA) formation. Increasing SOA will have a negative climate forcing effect through increased 76 
scattering of sunlight, causing an aerosol direct forcing, and increased cloud condensation nuclei 77 
(CCN), causing aerosol indirect forcing effects (Twomey 1974; Sporre et al. 2019). The 78 
consideration of drought effects on BVOC emissions, as investigated in this study, will 79 
counterbalance these effects, due to isoprene reductions caused by drought stress. During 80 
drought, increases in SOA and O3 are to be expected (Wang et al. 2017; Zhao et al. 2019), and 81 
with isoprene reductions we expect a reduction in the magnitude of increase of both pollutants. 82 
SOA acts as negative radiative forcing under future temperature and CO2 increases (Zhu et al. 83 
2017) and tropospheric O3 and total O3 acts as a positive radiative forcing (Skeie et al. 2020).  84 
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 85 
Drought is a common abiotic stress to terrestrial ecosystems characterized by low soil 86 

moisture, usually associated with high temperature and low precipitation. However, even boreal 87 
forests undergo winter drought due to frozen soils. Recent work has shown a strong correlation 88 
between drought severity and fine-mode aerosols in the U.S. and estimated that regions 89 
undergoing severe drought see up to 17% surface enhancement of aerosols during the growing 90 
season (Wang et al. 2017). This suggests a strong perturbation of drought to atmospheric 91 
aerosols, likely caused by changing BVOC emissions due to drought stress. Limited field and lab 92 
measurements have shown that during drought, isoprene has a unique emission response where 93 
initial increase in temperature causes an increase in emission, but prolonged or severe drought 94 
causes a decrease of emissions due to the shutdown of physiological processes (Potosnak et al. 95 
2014). This behavior is not reproduced by commonly used BVOC emission models such as the 96 
Model of Emissions of Gases and Aerosols from Nature Version 2.1 (MEGAN2.1), which has a 97 
simple drought algorithm which is often not used due to the unavailability of the required driving 98 
variables in chemistry climate models (CCMs), and the Biogenic Emission Inventory System 99 
(BEIS), which does not include a drought algorithm as an option. 100 

 101 
Isoprene flux observations at the Missouri Ozarks (MOFLUX) Ameriflux site in Missouri (SI 102 

Fig. S1) recorded a moderate drought in summer 2011 (Potosnak et al. 2014) and a particularly 103 
severe drought event in summer 2012 (Seco et al. 2015). To the best of our knowledge, these are 104 
the only in situ isoprene flux measurements capturing a drought anywhere. Using the MOFLUX 105 
observations, Jiang et al. (2018) developed an isoprene drought stress activity factor for 106 
MEGAN3 (Model of Emissions of Gases and Aerosols from Nature Version 3) designed to 107 
reduce emissions of isoprene during drought. The previous MEGAN2.1 isoprene drought 108 
parameterization utilized soil moisture and soil wilting point threshold to include impacts of 109 
drought on photosynthetic processes. The MEGAN3 isoprene drought stress activity factor is a 110 
more process-based parameterization based on a photosynthetic parameter (Vc,max ) and water 111 
stress (𝛽𝛽) from the Community Land Model (CLM) as coupled with the CAM-Chem climate 112 
model (Jiang et al. 2018). Vc,max is the maximum carboxylation capacity of a leaf (usually in units 113 
of micromole CO2 per leaf area per time); that is, it is the ability of a plant to convert CO2 into 114 
sugar, and hence determine productivity of carbon substrates for biogenic volatile organic 115 
compounds (BVOCs) production when no other conditions are limiting. 𝛽𝛽 is a scaling factor 116 
between zero to one, used in CLM to reduce Vc,max due to plant water stress. MEGAN3 isoprene 117 
drought stress was also incorporated into the CSIRO chemical transport model (C-CTM) with 118 
Australian land surface models Mk3.6 Global Climate Model and the Soil-Litter-Iso model with 119 
a focus on Australia (Emmerson et al. 2019). Both prior modeling studies (Jiang et al. 2018; 120 
Emmerson et al. 2019) only looked at the drought effects on O3; here we study the combined 121 
effect of drought on O3 and formaldehyde column. 122 

 123 
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The accurate simulation of stress-affected emissions of isoprene during extreme hydroclimate 124 
events (i.e. drought) is crucial to understanding vegetation-climate-chemistry feedbacks, because 125 
isoprene is a precursor to tropospheric O3 and SOA, both being climate forcers as well as air 126 
pollutants. Here we focus on deriving a model-specific tuned isoprene drought stress factor that 127 
is coupled into the existing MEGAN2.1 framework in NASA GISS ModelE, an Earth System 128 
Model, to model the effect of drought on isoprene emissions and their effect on atmospheric 129 
composition. The model-specific tuning is required due to different land system models 130 
parameterizing key variables of Vc,max and 𝛽𝛽 in different ways with varying distributions. The 131 
model’s drought effects will be extensively evaluated over the US, due to the availability of 132 
observational evidence during drought (Wang et al. 2017). While the MOFLUX data are the only 133 
available measurements of isoprene emissions during drought, formaldehyde (HCHO), the high 134 
yield oxidation product of isoprene, can be used as a proxy for isoprene emissions (Zhu et al. 135 
2016). Section 2 describes the modelling approaches used to represent drought impacts on 136 
isoprene emissions. Section 3 describes the comparison of modeled isoprene emissions to 137 
observations at the MOFLUX site during drought along with necessity of building a model 138 
specific isoprene drought stress parameterization. Section 4 details the comparisons between 139 
simulation with model specific tuned isoprene drought stress (DroughtStress_ModelE) and 140 
observational O3, PM2.5 (particulate matter ≤ 2.5 𝜇𝜇m), and tropospheric formaldehyde columns 141 
(ΩHCHO) over North America. 142 

 143 
2. Methods and Data 144 

2.1. The biogenic emission model MEGAN  145 
MEGAN is a widely used BVOC emissions model that is implemented in many CCMs. Here 146 

we describe briefly MEGAN2.1 as implemented in ModelE. MEGAN2.1 calculates the net 147 
primary emissions for 20 compound classes, which are speciated into over 150 species such as 148 
isoprene, monoterpenes, etc. (Guenther et al. 2012). The emissions rate (µg grid cell-1 h-1) of 149 
each compound into the above canopy atmosphere from a model grid cell is calculated: 150 

 151 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝐸𝐸 ×  𝑦𝑦 ×  𝑆𝑆                                                                                                                                     (1)  152 
 153 
where 𝐸𝐸𝐸𝐸 (µg m-2 h-1) is emission factor per compound, 𝑦𝑦 is the dimensionless emission activity 154 
factor that accounts for emission response to phenological and meteorological conditions, and S 155 
is the grid cell area (m2).  156 
 157 
The emission activity factor 𝑦𝑦 for each compound is calculated following the MEGAN2.1 158 
parameterization (Guenther et al. 2006; Guenther et al. 2012; Henrot et al. 2017).  159 
 160 
𝑦𝑦 = 𝑦𝑦𝐶𝐶𝐶𝐶  ×  𝑦𝑦𝐴𝐴 × 𝑦𝑦𝑑𝑑 × 𝑦𝑦𝐶𝐶𝑜𝑜2                                                                                                          (2)  161 
 162 
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Where 𝑦𝑦𝐶𝐶𝐶𝐶 is the canopy environment coefficient, assigned a value of one for standard 163 
conditions, and it takes into account variations associated with LAI (m2 m-2), photosynthetic 164 
photon flux density (PPFD) (µmol of photons in 400-700 nm range m-2 s-1), and temperature (K). 165 
𝑦𝑦𝐴𝐴 is the leaf age emission activity factor, parameterization of which is based on coefficients of 166 
the decomposition of the canopy into new, growing, mature, and senescing leaves for current and 167 
previous months’ LAI (Guenther et al. 2006; Guenther et al. 2012). 𝑦𝑦𝑑𝑑 is the isoprene drought 168 
stress activity factor and 𝑦𝑦𝐶𝐶𝑜𝑜2 is the isoprene emission activity factor associated with CO2 169 
inhibition (for all other compounds 𝑦𝑦𝑑𝑑 and 𝑦𝑦𝐶𝐶𝑜𝑜2 = 1). The biogenic emission module implemented 170 
in ModelE follows the ECHAM6-HAMMOZ online MEGAN2.1 implementation (Henrot et al. 171 
2017) in a CCM. Within ModelE the MEGAN2.1 module maps the 16 plant functional types 172 
(PFTs) from Ent TBM (Terrestrial Biosphere Model) (Kim et al. 2015) into 16 MEGAN PFTs, 173 
and contains 13 chemical compound classes. ModelE uses a modified MEGAN2.1 following 174 
(Henrot et al. 2017) to provide a framework to simulate isoprene emissions, and uses prescribed 175 
emissions factors per PFT to simulate emissions per compound class. 176 
 177 

In Henrot et al. (2017) to avoid using a detailed canopy environment model calculating light 178 
and temperature at each canopy depth, the Parameterized Canopy Environmental Emission 179 
Activity (PCEEA) approach from Guenther et al. (2006) is used to replace 𝑦𝑦𝐶𝐶𝐶𝐶 with a 180 
parameterized canopy environment activity factor (𝑦𝑦𝐿𝐿𝐿𝐿𝐿𝐿 × 𝑦𝑦𝑃𝑃 × 𝑦𝑦𝑇𝑇). With this approach the light 181 
dependent and light independent factors are multiplied by 𝑦𝑦𝐿𝐿𝐿𝐿𝐿𝐿 not LAI so they are not directly 182 
proportional to LAI. This approach allows for calculation of light dependent emissions following 183 
isoprene emission response to temperature, where its assumed the light dependent factor (LDF) 184 
equals one for isoprene and light independent emissions follow the monoterpene exponential 185 
temperature response. Please see Guenther et al. (2006); Guenther et al. (2012); Henrot et al. 186 
(2017) for activity factor parameterizations. At any given time step in ModelE, the emissions 187 
formula for a compound class (c) and PFT (i), in units of kg m-2 s-1 is given by: 188 

 189 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖,𝑐𝑐 = (1𝑥𝑥10−9/3600) × �𝐸𝐸𝐸𝐸𝑖𝑖,𝑐𝑐 ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖� × 𝑦𝑦𝐿𝐿𝐿𝐿𝐿𝐿 × 𝑦𝑦𝐴𝐴 × 𝑦𝑦𝑑𝑑 × 𝑦𝑦𝑐𝑐𝑜𝑜2 × ((1 −190 
𝐿𝐿𝐿𝐿𝐿𝐿) × yTLI + LDF × yP  × yTLD) × 𝑆𝑆𝑆𝑆𝑐𝑐 × 𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐                                                                   (3)                                                191 
 192 
where EFi,c is the emissions factor (µg m-2 hr-1) for a given PFT and compound class, PFTboxfi is 193 
the fraction of the grid cell (ranging from zero to one) covered by PFT i, and SFc is a linear scale 194 
factor for compound class c. The activity factors, y, listed in Equation (3) are unitless and 195 
account for the emissions response to leaf area index (LAI), aging (A), drought (d), CO2 (CO2), 196 
and PPFD (P). The LDF, weights the contributions from light independent (yTLI) and light 197 
dependent (𝑦𝑦𝑇𝑇𝑇𝑇𝑇𝑇) emissions response to temperature. MWCc stands for a molecular weight 198 
conversion to remove non-carbon mass, if appropriate. (1x10-9/3600) is a timestep conversion for 199 
seconds in an hour. Note that although the drought activity factor 𝑦𝑦𝑑𝑑 is present in ModelE, it is 200 
set to equal one in all cases prior to this work, meaning no drought effects on BVOC emissions 201 
in the model. 202 
 203 
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For example, the emission formula for the compound class of isoprene in ModelE for 204 
PFT i is as follows (where LDF=1):  205 

 206 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 = (1𝑥𝑥10−9/3600) × �𝐸𝐸𝐸𝐸𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖� × 𝑦𝑦𝐿𝐿𝐿𝐿𝐿𝐿 × 𝑦𝑦𝐴𝐴 × 𝑦𝑦𝑑𝑑 × 𝑦𝑦𝑐𝑐𝑜𝑜2 × (𝑦𝑦𝑃𝑃 × 𝑦𝑦𝑇𝑇𝑇𝑇𝑇𝑇) ×207 
𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 × (60.05/68.12)                                                                                                                                   (4) 208 
 209 

2.2 MEGAN2.1 Isoprene Drought Stress Emission Algorithm 210 
Guenther et al. (2006) introduced isoprene drought stress as a soil moisture dependent 211 

algorithm called 𝑦𝑦𝑆𝑆𝑆𝑆. This isoprene drought stress activity factor relied upon soil moisture and 212 
wilting point to apply drought stress to isoprene emissions. The algorithm for soil moisture 213 
isoprene drought stress is as follows: 214 

 215 
 𝑦𝑦𝑆𝑆𝑆𝑆 = 1  𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝜃𝜃 > 𝜃𝜃1                                                                                                               (5a) 216 

 𝑦𝑦𝑆𝑆𝑆𝑆 =  𝜃𝜃−  𝜃𝜃𝑤𝑤
𝛥𝛥𝜃𝜃1

 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝜃𝜃𝑤𝑤 <  𝜃𝜃 < 𝜃𝜃1                                                                                            (5b) 217 

 𝑦𝑦𝑆𝑆𝑆𝑆 = 0  𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝜃𝜃 < 𝜃𝜃𝑤𝑤                                                                                                              (5c) 218 
 219 

where 𝜃𝜃 is soil moisture (volumetric water content m3 m-3), 𝜃𝜃𝑤𝑤 is the point beyond which plants 220 
cannot extract water from soil, known as the wilting point, m3 m-3, 𝛥𝛥𝜃𝜃1 (=0.06 in Guenther et al. 221 
2006 and =0.04 in Guenther et al. 2012) is an empirical parameter, and 𝜃𝜃1 is defined as 𝜃𝜃𝑤𝑤 +222 
 𝛥𝛥𝜃𝜃1. Soil moisture and wilting point are not widely available parameters in models, and 𝑦𝑦𝑆𝑆𝑆𝑆 was 223 
not widely adopted to represent isoprene drought stress as studies showed substantial uncertainty 224 
associated with soil moisture predicted response of isoprene emission to water stress and in 225 
selection of wilting point values (Müller et al. 2008; Tawfik et al. 2012; Sindelarova et al. 2014; 226 
Huang et al. 2015; Jiang et al. 2018). There also exist challenges associated with validating soil 227 
moisture datasets due to the limited spatial coverage of in-situ root-zone measurements in the 228 
contiguous United States (Ochsner et al. 2013). A study found that the accurate simulation of 229 
soil moisture in land surface models was highly model-dependent, due to the differing horizontal 230 
and vertical spatial resolution of such models at large scales (Koster et al. 2009). Potosnak et al. 231 
(2014) determined that the selection of different wilting point values greatly impacted the 232 
drought impacts on biogenic isoprene emission. With these associated challenges, it was rare to 233 
find isoprene drought stress implemented in CCMs, thus a new isoprene drought activity factor 234 
needed to be developed that could be easily incorporated into a variety of models that had a land 235 
surface model (LSM) or terrestrial biosphere model (TBM).  236 
   237 

2.3 MEGAN3 Isoprene Drought Stress Emission Algorithm  238 
Jiang et al. (2018) developed a new isoprene drought stress activity factor in MEGAN3 that 239 

focuses on photosynthetic carboxylation capacity and water stress to model reductions of 240 
vegetative isoprene during drought. The algorithm was developed using isoprene flux 241 
observations during the severe drought of the summer of 2012 and less severe drought of 2011 242 
(Potosnak et al. 2014; Seco et al. 2015) at MOFLUX. The MOFLUX site is located in the 243 
University of Missouri Baskett Wildlife Research area in central Missouri which is known as the 244 
isoprene volcano (Wells et al. 2020). The MOFLUX site is comprised primarily of deciduous 245 
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broadleaf trees, primarily oaks, known to emit high quantities of isoprene. All meteorological 246 
data from the site comes from the Ameriflux website (https://ameriflux.lbl.gov/sites/siteinfo/US-247 
MOz#overview).  248 
 249 

We refer to the original MEGAN3 drought stress developed by Jiang et al. (2018) to be 250 
DroughtStress_MEGAN3_Jiang, and the corresponding parameterization for isoprene activity 251 
factor during drought where (𝑦𝑦𝑑𝑑) is a function of PFT and where the values of 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝛽𝛽 are 252 
specified by PFT is: 253 

 254 
𝑦𝑦𝑑𝑑 =  1 ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝛽𝛽 ≥ 0.6                                                                                                              (6a) 255 

𝑦𝑦𝑑𝑑 = �𝑉𝑉𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚 × 𝛽𝛽�
𝛼𝛼

 ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝛽𝛽 < 0.6, 𝛼𝛼 = 37                                                                                  (6b) 256 

0 ≤ 𝑦𝑦𝑑𝑑  ≤ 1                                                                                                                                (6c) 257 
 258 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 = (1𝑥𝑥10−9/3600) × �𝐸𝐸𝐸𝐸𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖� × 𝑦𝑦𝐿𝐿𝐿𝐿𝐿𝐿 × 𝑦𝑦𝐴𝐴 × 𝑦𝑦𝑑𝑑 × 𝑦𝑦𝑐𝑐𝑜𝑜2 × (𝑦𝑦𝑃𝑃 × 𝑦𝑦𝑇𝑇𝑇𝑇𝑇𝑇) ×259 
𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖                                                                                                                                                                   (7) 260 

 261 
The drought stress activity factor, 𝑦𝑦𝑑𝑑, in DroughtStress_MEGAN3_Jiang was originally  262 

developed using the Community Land Model Version 4.5 (CLM4.5) (Jiang et al. 2018). The 263 
photosynthetic parameter used is Vc,max, which is the maximum rate of leaf-level carboxylation.  264 
In ModelE, Vc,max is scaled with an enzymatic kinetics response to temperature, and drought 265 
stress reduces leaf stomatal conductance, thereby reducing photosynthetic activity through CO2 266 
diffusion limitation rather than by reduction of Vc,max. In CLM4.5, Vc,max is a function of nitrogen 267 
(Jiang et al. 2018). Water stress in CLM4.5 is based on soil texture (Clapp and Hornberger 268 
1978), and it is a function of soil water potential of each soil layer, wilting factor, and PFT root 269 
distribution. Water stress (𝛽𝛽) ranges from zero when a plant is completely stressed to one when a 270 
plant is not undergoing stress. In CLM4.5, Vc,max is scaled online by 𝛽𝛽 before being applied into 271 
the isoprene drought activity parameterization, thus this scaling step is not reflected in the 272 
equations shown by Jiang et al. (2018). Since ModelE does not scale Vc,max by 𝛽𝛽 (instead, 273 
ModelE scales leaf stomatal conductance by 𝛽𝛽), to reproduce the original scheme by Jiang et al. 274 
(2018) as much as possible in ModelE, we scaled Vc,max with 𝛽𝛽 inside the equation of isoprene 275 
drought activity factor as in Eq. (6b). 𝑦𝑦𝑑𝑑 as defined in Eq. (6) is then applied in ModelE as an 276 
activity factor into the MEGAN2.1 isoprene emissions equation per every plant functional type 277 
(PFT) and the modeling results from this simulation are referred to as 278 
DroughtStress_MEGAN3_Jiang. The 𝑦𝑦𝑑𝑑 ranges from zero to one and is designed to reduce 279 
isoprene emissions during severe and prolonged drought.  280 

 281 
2.4 NASA GISS ModelE Climate Chemistry Model 282 
NASA GISS ModelE2.1 is an Earth System Model (ESM) with a horizontal and vertical 283 

resolution of 2○ degrees in latitude and 2.5○ degrees in longitude with 40 vertical layers from the 284 
surface to 0.1 hPa (Kelley et al. 2020). The climate model is configured in CMIP6 (Coupled 285 
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Model Intercomparison Project Phase 6) configuration (Miller et al. 2021) with fully coupled 286 
atmospheric composition with interactive gas-phase chemistry. The model described here is 287 
driven by historical Atmospheric Model Intercomparison Project simulations (AMIP), using 288 
prescribed ocean temperature and sea ice datasets. There are two aerosol schemes to choose 289 
from: MATRIX (“Multiconfiguration Aerosol TRacker of mIXing state”) (Bauer et al. 2008) a 290 
microphysical aerosol scheme and OMA (One-Moment Aerosol) mass-based aerosol scheme 291 
(Koch et al. 2006; Miller et al. 2006; Bauer et al. 2007; Tsigaridis et al. 2013; Bauer et al. 2020). 292 
Here we use the OMA scheme, due to its better representation of secondary organic aerosol 293 
chemistry (Tsigaridis et al. 2013). SOA is calculated using the CBM4 chemical mechanism to 294 
describe the gas phase tropospheric chemistry together with all main aerosol components 295 
including SOA formation and nitrate, and is calculated using four tracers in the model. Isoprene 296 
(VOCs) contribute to the formation of SOA. OMA has 34 tracers for the representation of 297 
aerosols that are externally mixed, except for mineral dust that can be coated (Bauer et al. 2007), 298 
and has prescribed constant size distribution (Bauer et al. 2020). OMA aerosol schemes are 299 
coupled to the stratospheric and tropospheric chemistry scheme (Shindell et al. 2013) which 300 
includes inorganic chemistry of Ox, NOx, HOx, CO, and organic chemistry of CH4 and higher 301 
hydrocarbons, with explicit treatment of secondary OA (organic aerosol), and the stratospheric 302 
chemistry scheme which includes chlorine and bromine chemistry together with polar 303 
stratospheric clouds. O3 and aerosols impact climate via coupling to the radiation scheme, and 304 
aerosols serve as cloud condensation nuclei (CCN) for cloud activation. The model includes the 305 
first indirect effect. Sea salt, dimethyl sulfide (DMS), and biogenic dust emission fluxes are 306 
calculated interactively, while anthropogenic dust is not represented in ModelE2.1. Other 307 
anthropogenic fluxes are from the Community Emissions Data System Inventory (CEDS) 308 
(Hoesly et al. 2018) and biomass burning is from GFED4s (Global Fire Emissions Database with 309 
small fires) inventory (van Marle et al. 2017) for 1850-2014. 310 
 311 

Vegetation activity in ModelE is simulated with a dynamic global vegetation model, the Ent 312 
Terrestrial Biosphere Model (Ent TBM) (Kim et al. 2015). In standard ModelE experiments, the 313 
Ent TBM prescribes satellite-derived vegetation canopy structure (plant functional type, canopy 314 
height, monthly leaf area index) (Ito et al. 2020) as boundary conditions for coupling the 315 
biophysics of canopy radiative transfer, photosynthesis, vegetation and soil respiration, and 316 
transpiration with the land surface model and atmospheric model. These processes provide 317 
surface fluxes of CO2 and water vapor, and surface albedo is specified by cover type and season. 318 
ModelE uses the MEGAN2.1 BVOC emissions model to simulate interactive biogenic emissions 319 
from vegetation (Guenther et al. 2006; Guenther et al. 2012). Ent TBM water stress is calculated 320 
as a scaling factor between zero and one as a function of relative extractable water (REW) for the 321 
given soil texture and PFT-dependent levels of REW for onset of stress and wilting (Kim et al. 322 
2015); this scaling has been updated since Kim et al. (2015) to be a function of the water stress 323 
factor of only the wettest soil layer in the PFT’s root zone. Ent TBM uses a leaf-level model of 324 
coupled Farquhar-von Caemmerer photosynthesis/Ball-Berry stomatal conductance (Farquhar 325 
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and von Caemmerer 1982; Ball and Berry 1985). The model calculates an unstressed leaf 326 
photosynthesis rate and stomatal conductance, then applies its water stress scaling factor to scale 327 
down leaf stomatal conductance, to emulate how hormonal signaling by roots under water stress 328 
induces stomatal closure. Since there is a coupling of transpiration and CO2 uptake through 329 
stomatal conductance, water stress thereby also reduces photosynthesis rate through the 330 
limitation on CO2 diffusion into the leaf; this is different from CLM4.5’s approach, which 331 
instead reduces Vc,max. Canopy radiative transfer in the Ent TBM scales leaf processes to the 332 
canopy scale by calculating the vertical layering of incident photosynthetically active radiation 333 
on sunlit versus shaded leaves. The different PFTs in Ent TBM have different critical soil 334 
moisture values for the onset of stress (when stomatal closure begins in response to drying soils) 335 
and their wilting point (when the plant is unable to withdraw moisture from the soil and complete 336 
stomatal closure occurs). It should be noted that the GISS land surface model is wetter than 337 
observed soil moisture (Kim et al. 2015). Vc,max is a function of a Q10 temperature function in 338 
ModelE. Since nitrogen dynamics are not represented yet in the Ent TBM, leaf nitrogen is fixed 339 
and therefore Vc,max is not dynamic with nitrogen as in CLM4.5. The Q10 coefficient is often used 340 
to predict the impact of temperature increases on the rate of metabolic change (Rasmusson et al. 341 
2019).  342 

 343 
To emulate the MEGAN/CLM representation of drought stress, in this study, in the Ent TBM 344 

leaf model, we applied a reduction in Vc,max with water stress as shown in Eq. (6b). It is important 345 
to note that the reduction of Vc,max with water stress in Eq. (6b), is not used outside the isoprene 346 
drought stress parameterization, so the Vc,max reduction is not applied to the calculation of 347 
photosynthetic CO2 uptake; this avoids applying another secondary indirect scaling to 348 
conductance, since the Ent TBM already applies its water stress factor to reduce stomatal 349 
conductance.  350 
 351 

For this study, ModelE2.1 was configured with a transient atmosphere and ocean using a 352 
prescribed sea surface temperature (SST) and sea ice (SSI) according to observations. The 353 
transient simulations contain continuously-varying greenhouse gases in order to represent a 354 
realistic mode in present day. To facilitate direct comparison with atmospheric composition 355 
observations as in this study, meteorology is nudged to the National Centers for Environmental 356 
Prediction (NCEP) reanalysis winds. Four transient ModelE simulations were run for the period 357 
of 2003-2013 with a three-year spin-up using MEGAN2.1 with varying configurations for 358 
isoprene drought stress to be described below. The authors found that the default MEGAN 359 
implementation in ModelE2.1 underestimates isoprene and monoterpene emissions, thus 360 
appropriate scaling factors (SFc) were applied to match literature for global annual emission 361 
estimates, 1.8 for isoprene and 3 for monoterpenes to match literature estimates of around ~500 362 
Tg C of isoprene and ~130 Tg C of monoterpenes (Arneth et al. 2008; Guenther et al. 2012).  363 

 364 
2.5 Observations of Isoprene Emissions at MOFLUX during Drought of 2011-2012 365 
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 The MOFLUX site located at 38.7441○N, -92.2000○W (latitude, longitude) is comprised 366 
mostly of deciduous broadleaf forests dominated by oak-hickory forest and the climate is 367 
classified as humid subtropical with no dry season and hot summers. The site experienced a mild 368 
drought in the mid to late summer of 2011 and an extreme to exceptional drought from the mid 369 
to late summer of 2012 when concurrent biogenic isoprene flux measurements were taken. The 370 
2011 drought was not as severe as the drought of summer of 2012. The ecosystem response of 371 
isoprene has two stages including a mild phase of drought stress where emissions are stimulated 372 
by increases in leaf temperature due to reduced stomatal conductance while in the second stage 373 
of drought, the more severe phase of drought stress, emissions are suppressed by reduction in 374 
substrate availability or isoprene synthase production (Potosnak et al. 2014; Seco et al. 2015).  375 

 376 
In 2011, the spring was wet but the drought started to appear in June due to lack of rainfall 377 

while temperatures broke records and continued through July (Potosnak et al. 2014; Jiang et al. 378 
2018). However, the USDM (U.S. Drought Monitor) did not capture this drought signal from 379 
June - July and only showed abnormally dry periods from August 2 - August 16, and never went 380 
into extreme (D2) or severe drought stage (D3). This suggests 2011 summer was a useful case 381 
only for studying drought response of isoprene during weak drought conditions. The highest 382 
observed isoprene fluxes were from July 11 – August 3 shown in Fig. 1a. Potosnak et al. (2014) 383 
reported that from July 14 - August 10 their MEGAN2.1 simulations consistently underestimated 384 
isoprene emissions during onset of drought and overestimated as drought progressed from 385 
August 18 to September 2. From August 3 – August 23 there was a total of 65 mm of 386 
precipitation, which led to an increase in observed soil moisture. It was suggested that since 387 
observed soil moisture increases during the period of drought progression when isoprene is 388 
decreasing (August 18 - September 2) relative to the onset of drought (July 14 - August 10), this 389 
indicates the response to drought stress during this year is time dependent, and a time-390 
independent algorithm based on soil moisture will not capture the relevant processes during a 391 
less severe drought year. It was also noted that MEGAN2.1 underpredicts during the cooler 392 
months of May-June and underpredicts during the warmer month of July (Potosnak et al. 2014), 393 
and only overpredicts during small portions of August-September as denoted by a grey box in 394 
Fig. 1a. With this pattern of underprediction observed in MEGAN2.1 simulations and also seen 395 
in Default_ModelE, as well as weak drought conditions as stated above, 2011 is not an ideal year 396 
to tune an isoprene drought stress algorithm to target the reduction period caused by drought 397 
stress.  398 

 399 
In 2012, there were three unique periods that displayed the development of a severe drought 400 

that make it ideal to tune an isoprene drought stress algorithm. Shown in Fig. 1b is the daily 401 
averaged isoprene flux broken up into three periods. We define the MAXVOC episode from 402 
May 1 - July 16, severe drought period (July 17-August 31) shaded in brown in Fig. 1b, and the 403 
drought recovery period (September 1-31). Although Seco et al. (2015) defined MAXVOC from 404 
June 18 – July 31, they identified July 16 as the transitional stage between MAXVOC episode 405 

https://doi.org/10.5194/egusphere-2022-292
Preprint. Discussion started: 13 May 2022
c© Author(s) 2022. CC BY 4.0 License.



11 
 

and severe drought. Thus, our work used July 16 to separate MAXVOC and severe drought 406 
periods. The periods of pre-drought (prior to May 31) and mild drought identified by Seco et al. 407 
(2015) from May 31- June 14 are included in the MAXVOC period, because during this time 408 
period a typical seasonal pattern of increasing emissions with increasing temperatures is shown, 409 
and there is no indication of decreasing emissions due to drought stress. The mild drought period 410 
(May 31- June 14) corresponds to USDM periods of abnormally dry and moderate drought. 411 
Isoprene emissions continue to increase during the beginning of summer, which is supported by 412 
several studies that show isoprene emissions during the first stages of drought increase even 413 
though there is a decrease in CO2 fixation, which is attributed to drought induced stomatal 414 
closure and rising leaf temperature and decreasing transpirational cooling and CO2 concentration 415 
in the leaf (Rosenstiel et al. 2003; Pegoraro et al. 2004; Potosnak et al. 2014; Seco et al. 2015). 416 
Separating MAXVOC and severe drought period allows for the algorithm development to target 417 
the latter severe drought stage where isoprene reduction occurs, while not reducing emissions 418 
during the early, and less severe, stages of drought. During the severe drought period, total 419 
annual precipitation was the lowest in a decade while soil water content reached its minimum at 420 
the end of August when the drought peaked (Jiang et al. 2018). During the severe drought there 421 
is a marked decrease in isoprene flux shown by the brown shaded box coinciding with lower 𝛽𝛽 422 
values. It is well established that isoprene emissions are linked to high temperatures (Singsaas 423 
and Sharkey 2000), and without the contributing factor of drought there should be a rising 424 
increase in isoprene emissions in July and August. The severe drought period encompasses 425 
periods of severe and extreme drought identified by the USDM. July 3 marks the first week 426 
indicated by USDM of severe drought and July 31 marks the first week of extreme drought. 427 
During severe drought isoprene production is suppressed by reductions in substrate availability 428 
and isoprene synthase transcription (Potosnak et al. 2014). Rain events at the end of August led 429 
to drought recovery and soil water content started to increase, which is indicated by increasing 𝛽𝛽 430 
values shown in the drought recovery period indicated in purple in Fig. 1b. Overall, 2012 shows 431 
a complete development of drought conditions that affect isoprene emissions and will provide 432 
useful constraints on the drought stress factor parameterization: a MAXVOC period that 433 
encompasses pre- and mild drought periods, a severe drought period (July 17 – August 31), and a 434 
drought recovery period (September 1-30). 435 
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 436 

Figure 1. Daily isoprene emissions flux at MOFLUX (MAY-AUG 2011 and MAY-SEP 2012) LST timeseries are shown. 437 
Black shows observed isoprene emissions (abbreviated as ISOP), red shows Default_ModelE without isoprene drought 438 
stress, orange shows DroughtStress_MEGAN3_Jiang, and green shows DroughtStress_ModelE with units of mg/m2/hr of 439 
isoprene. (a) Shaded in the grey region from JUL 17 through AUG 31 of 2011, is the period where water stress falls below 440 
0.4 for short periods. (b) Shaded in grey is the MAXVOC period, and shaded in brown is the period of severe/extreme 441 
drought from July 17 through August 2012, and shaded in purple is the drought recovery period. 442 
 443 

2.6 Offline Isoprene Emissions Model 444 
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An offline model was created based on the isoprene emissions formula Eq. (4) of the 445 
MEGAN module contained in ModelE in order to develop the new parametrization in a timely 446 
fashion without waiting for online transient simulations to complete. ModelE was first run in a 447 
default transient simulation with MEGAN2.1 where no isoprene drought stress was applied, 448 
referred to as Default_ModelE, from which the MEGAN activity factors and variables required 449 
to drive the offline calculation of isoprene emissions were output and archived. The offline 450 
model was then driven by these outputs at the half hourly timestep to match with the 30-minute 451 
timestep in the online calculation of physics and the MEGAN module. The offline model was 452 
verified by making sure outputs of isoprene emissions matched the online Default_ModelE 453 
simulation. With the verified offline model, different parameterizations of isoprene drought 454 
stress could be tested and cross verified with observations at MOFLUX. The offline model is 455 
used to derive a model specific α and 𝛽𝛽 threshold (Eq. (6a-6c)) for ModelE in order to create the 456 
appropriate parameterization of a model specific isoprene drought stress in ModelE known as 457 
DroughtStress_ModelE, described in Section 3.3. Since models calculate water stress and Vc,max 458 
in different ways, the offline model is the necessary step to derive model-specific water stress 459 
thresholds to target drought periods and ensure α and 𝛽𝛽 are being applied correctly. 460 
 461 

2.7 ModelE Sensitivity Simulations  462 
Four transient global ModelE simulations were configured for the period of 2003-2013 with 463 

a three-year spin-up, as described in Table 1. A default simulation (Default_ModelE) that set 𝑦𝑦𝑑𝑑 464 
=1 was performed where no isoprene drought stress parameterization was applied. A second 465 
simulation named DroughtStress_MEGAN3_Jiang was performed as a sensitivity test to 466 
determine the efficacy of the DroughtStress_MEGAN3_Jiang algorithm Eq. (6a-6c), which is 467 
not tuned specifically for ModelE, and was originally developed by Jiang et al. (2018) as a non-468 
model specific tuned isoprene drought stress formula to be used widely in models. A third 469 
simulation was performed with the offline derived ModelE tuned isoprene drought stress 470 
parameterization to best fit MOFLUX observations (MOFLUX_DroughtStress) using Eq. (8a-471 
8c) to be described in Section 3.2. A fourth simulation called DroughtStress_ModelE was 472 
performed using a subset of parameters derived from MOFLUX_DroughtStress but a different 473 
drought activation method in Section 3.3 using Eq. (10a-10b).  474 
 475 
 476 
 477 
 478 
 479 
 480 
 481 
 482 
 483 
 484 
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Table 1. ModelE Online Transient Simulation Descriptions 485 
Simulation Name Drought 

Stress 
Isoprene 
Emission 

Eqn. 

𝜷𝜷 Threshold α 

1) Default_ModelE NO Eq. (4) N/A N/A 
2) DroughtStress_MEGAN3_Jiang YES 

Eq. (6a-6c) 
Eq. (7) 𝛽𝛽 < 0.6 37 

3) MOFLUX_DroughtStress YES 
Eq. (8a-8c) 

Eq. (9) 0.25 < 𝛽𝛽 < 
0.40 

100 

4) DroughtStress_ModelE YES 
Eq. (10a-10b) 

Eq. (9) 𝛽𝛽 < 4th 
percentile 

100 

 486 
3. Development of Model specific Drought Stress Parameterization 487 

3.1. MOFLUX Single Site Observational Comparison to Model  488 
Shown in Fig. 1a is the 2011 timeseries of biogenic isoprene flux at the MOFLUX site of two 489 

online simulations Default_ModelE (red) and DroughtStress_MEGAN3_Jiang (orange) 490 
compared to observations (black). In 2011, Default_ModelE tended to underestimate isoprene 491 
flux during onset of drought (July 14 - August 10) and had minor periods of overestimation 492 
during drought progression (August 18 – September 2) which was also seen by MEGAN2.1 493 
simulations of Potosnak et al. (2014). DroughtStress_MEGAN3_Jiang simulation applied 494 
isoprene drought stress from mid-July through September when 𝛽𝛽 fell below the 0.6 threshold 495 
identified by Jiang et al. (2018). In the DroughtStress_MEGAN3_Jiang simulation it is shown 496 
that during the drought progression stage, DroughtStress_MEGAN3_Jiang isoprene is reduced 497 
compared to Default_ModelE, but reductions are not strong enough to align with lower observed 498 
values for a majority of this period. The timeseries shows that there is little deviation between 499 
the Default_ModelE and DroughtStress_MEGAN3_Jiang during the 2011 mild drought. 500 

 501 
Shown in Fig. 1b is the 2012 timeseries of biogenic isoprene flux at the MOFLUX site of two 502 

online simulations Default_ModelE and DroughtStress_MEGAN3_Jiang compared to 503 
observations, with 𝛽𝛽 (blue). Default_ModelE typically underestimates isoprene flux during the 504 
MAXVOC period, overestimates during the severe drought period, and reproduces the drought 505 
recovery period sufficiently except for September 6 where the model greatly overestimates 506 
leading to a peak not matched by observations. During the severe drought period the 507 
Default_ModelE mean bias (MB) ≅2.20 mg/m2/hr and the normalized mean bias (NMB) ≅ 508 
76.10%. 𝛽𝛽 daily average values fell below the 0.60 threshold on June 20 and continued below the 509 
threshold through September 3. With the 𝛽𝛽 falling below 0.60, the 510 
DroughtStress_MEGAN3_Jiang simulation starts reducing isoprene during the MAXVOC 511 
period and continues to reduce through the drought recovery period. This leads to compounding 512 
the underestimation during the MAXVOC period, small corrections to overestimation during 513 
severe drought but missing the peak overestimations, and too large of reductions of isoprene 514 
during drought recovery period. During the severe drought period the MB of 515 
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DroughtStress_MEGAN3_Jiang was ≅1.61 mg/m2/hr and the NMB was ≅55.81%. 516 
DroughtStress_MEGAN3_Jiang thus decreased the overestimation by ~20.29% during the 517 
severe drought period. The timeseries comparison for 2012 indicates the parameters in the Jiang 518 
et al. parameterization resulted in only minor improvements in ModelE for the severe drought 519 
period, because they were tuned for CLM4.5. The DroughtStress_MEGAN3_Jiang simulation 520 
shows that the α and 𝛽𝛽 need to be tuned on a model-by-model basis. Based on these minor 521 
improvements, and the differences in how Vc,max and 𝛽𝛽 are calculated in CLM4.5 versus Ent 522 
TBM, it was clear a model tuned parameterization could be used to further improve the 523 
relationship of simulated isoprene emissions during drought. 524 
 525 

3.2 Site Tuned MOFLUX_DroughtStress Parameterization 526 
Using the offline isoprene emissions model (Section 2.6) driven by catalogued variables from 527 

each time step of the Default_ModelE simulation and the MOFLUX biogenic isoprene flux 528 
measurements for 2012, we describe here how a water stress threshold to target severe/extreme 529 
drought periods and a model appropriate empirical variable (α) were derived to create the 530 
isoprene drought stress parameterization based upon the framework of Eq. (6a-6c), called 531 
MOFLUX_DroughtStress. MOFLUX_DroughtStress was developed to target the 2012 severe 532 
drought period shown in Fig. 1b as this period is when the model overestimates despite 533 
observations showing decreasing emissions during drought. The water stress threshold range 534 
targeting the severe drought period determines when the isoprene drought stress is applied and it 535 
is bounded to exclude the period of drought recovery and the onset of drought when isoprene 536 
emissions are still increasing. The range of 𝛽𝛽 specific to ModelE is 0.25 to 0.40 during the severe 537 
drought period, which differs from the CLM4.5 threshold of 0.60 as it is a model specific 538 
parameterization. Isoprene drought stress in MOFLUX_DroughtStress is thus applied only when 539 
𝛽𝛽 < 0.40, and at all other 𝛽𝛽 values 𝑦𝑦𝑑𝑑 = 1.  540 

 541 
To find the empirical variable, α, an offline sensitivity analysis was conducted using the 542 

offline isoprene emissions model with 0.25 to 0.40 as the 𝛽𝛽 threshold to activate isoprene 543 
drought stress. The PFT weighted value of Vc,max and 𝛽𝛽 were used to calculate the 𝑦𝑦𝑑𝑑 in the 544 
offline isoprene emissions model. A range of α values from 60 to 160 were tested in Eq. (8a-8c) 545 
to find 𝑦𝑦𝑑𝑑. 𝑦𝑦𝑑𝑑 dependence on the value of α was fed into Eq. (9) to output offline isoprene 546 
emissions. The offline modeled emissions from Eq. (9) were evaluated against observed isoprene 547 
fluxes at MOFLUX, and it was determined that α =100 gave the best fit and strongest 548 
relationship between the offline modeled emissions and measured isoprene at MOFLUX. The α 549 
variable, though empirically derived, is strongly related to the model specific Vc,max which is why 550 
our alpha differs from DroughtStress_MEGAN3_Jiang, where α =37. Based on the offline 551 
emissions comparisons to observed it was determined that MOFLUX_DroughtStress is defined 552 
as follows: 553 

 554 
𝑦𝑦𝑑𝑑 = 1 (𝛽𝛽 ≥ 0.4)                                                                                                                         (8a)                                                                                                                                                              555 
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𝑦𝑦𝑑𝑑 = �𝑣𝑣𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚 × 𝛽𝛽�
𝛼𝛼

 (0.25 < 𝛽𝛽 < 0.40) where α=100                                                                        (8b)                                                         556 

𝑦𝑦𝑑𝑑 = 1 (𝛽𝛽 ≤ 0.25)                                                                                                                        (8c)                                                                                                      557 
 558 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 = (1𝑥𝑥10−9/3600) × �𝐸𝐸𝐸𝐸𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖� × 𝑦𝑦𝐿𝐿𝐿𝐿𝐿𝐿 × 𝑦𝑦𝐴𝐴 × 𝑦𝑦𝑑𝑑 × 𝑦𝑦𝑐𝑐𝑜𝑜2 × (𝑦𝑦𝑃𝑃 × 𝑦𝑦𝑇𝑇𝑇𝑇𝑇𝑇) ×559 
𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖                                                                                                                                                                   (9) 560 
 561 
Where 𝑦𝑦𝑑𝑑 uses the area weighted average over PFTs of 𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝛽𝛽 in Eq. (8a-c), and thus 𝑦𝑦𝑑𝑑 in 562 
Eq. (9) is not a function of PFT, which differs from DroughtStress_MEGAN3_Jiang Eq. (7) 563 
where 𝑦𝑦𝑑𝑑 is a function of PFT. 564 
 565 

MOFLUX_DroughtStress simulation with isoprene drought stress applied Eq. (8a-8c) is 566 
found to reduce the MB at the MOFLUX site to ≅0.04 mg/m2/hr during the 2012 severe drought 567 
period, indicating the parameterization is able to correct the model overestimation of isoprene 568 
emissions. The NMB decreased to ≅1.53%, indicating a ~74.57% reduction compared to 569 
Default_ModelE. Large improvements were not expected for 2011 as this algorithm was 570 
designed to target severe/extreme drought. Despite the better agreement between measured and 571 
modeled fluxes in MOFLUX_DroughtStress at the MOFLUX site, the regional analysis 572 
described below determined that water stress values are region specific and a new approach was 573 
needed in order to make the algorithm applicable for other regions in the global model. 574 

 575 
3.3 New Percentile Threshold Isoprene Drought Stress Parameterization 576 
After implementing MOFLUX_DroughtStress in ModelE, we found for JUN-AUG 2011 577 

isoprene emissions reductions for the southeastern (SE) U.S. defined as (96-75○W, 25-38○N) of 578 
approximately -3.5%, -7.2%, -5.7% respectively. These regional reductions were smaller than 579 
expected as the SEUS 2011 was a spatially extensive severe drought over a largely forested and 580 
vegetated region. The US Drought Monitor (USDM) reported that the southeast area in moderate 581 
to exceptional drought for JUN-AUG 2011 was 63%, 61%, and 55% respectively. Other studies 582 
for other regions of the world have reported during severe drought that reductions in isoprene 583 
vary by region and have a large uncertainty. For example, Huang et al. (2015) reported using 584 
different soil moisture products isoprene reductions of 12-70% for Texas. Others showed 585 
reductions up to a maximum of 17% (Jiang et al. 2018; Wang et al. 2021). The reason why 586 
MOFLUX_DroughtStress falls on the lowest end of reported isoprene reductions for the regional 587 
analysis is probably because drought stress activation was calibrated to water stress ranges at a 588 
single site. As water stress is expected to vary regionally, a new regional method was needed in 589 
order to simulate drought stress effects globally.  590 

 591 
A new parameterization was designed to not only work at MOFLUX since this is the site 592 

used for validation, but capture isoprene drought signals for other regions. To do so, we first 593 
simulated daily averaged water stress during the growing season for ten years (2003-2012) at 594 
MOFLUX, a total of 2450 days. It was determined that water stress was less than the 0.4 595 
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threshold for 102 days, a percentage of ~ 4.16%. For simplicity, we rounded the percentage to 596 
4%. The new approach then relied upon finding the 4th percentile water stress value across ten 597 
years of daily water stress per grid and for each individual month in order to build a 598 
parameterization that would capture regional and seasonal variability in water stress in ModelE. 599 
This new drought stress parameterization is known as DroughtStress_ModelE and uses the same 600 
alpha (α=100) as MOFLUX_DroughtStress and is applied as weighted average per PFT. What 601 
makes this different from the previous approach, MOFLUX_DroughtStress, is that the water 602 
stress threshold used to apply drought stress is based on the model’s unique lowest 4th percentile 603 
of water stress on a grid-by-grid basis and is not based on the absolute values of water stress at a 604 
single site (i.e., MOFLUX). The 4th percentile of daily water stress was used as the trigger for 605 
drought stress activation. The parameterization for DroughtStress_ModelE is Eq. (10a-10b): 606 

 607 
𝑦𝑦𝑑𝑑 = 1    when (𝛽𝛽 ≥ 4th percentile)                                                                                            (10a)            608 

𝑦𝑦𝑑𝑑 = �𝑣𝑣𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚 × 𝛽𝛽�
𝛼𝛼

  when  (𝛽𝛽 < 4th percentile), where α=100                                                       (10b)                      609 

                                                                                                                                                                                                                                                                                                      610 
A global transient simulation was run from (2003-2013) applying Eq. (10a-10b) globally, 611 

called DroughtStress_ModelE in order to determine the effects of the isoprene drought stress 612 
parameterization and to see if it captures the signal of the 2011 SE drought. 613 
DroughtStress_ModelE for JJA 2011 showed isoprene emissions percent reductions for the SE of 614 
approximately -9.6%, -5.9%, and -12.7% respectively. These reported reductions are a factor of 615 
two greater than MOFLUX_DroughtStress for the same period, and are in the mid-range of 616 
reported isoprene reductions during drought. A complete timeseries of isoprene emissions at 617 
MOFLUX for all four simulations as described by Table 1 is shown in SI Fig. S2a-b for 2011 618 
and 2012. 619 
 620 

3.4 DroughtStress_ModelE Evaluation at MOFLUX 621 
During 2011 at the MOFLUX site, there were only small differences between 622 

Default_ModelE and DroughtStress_ModelE. The scatterplots of isoprene emissions at the 623 
MOFLUX site for the summer of 2011 show the hourly correlation coefficient between modeled 624 
and observed isoprene fluxes showed minor improvement from 0.77 to 0.78, with minor changes 625 
in slope and y-intercept (SI Fig. S3a,c). The diurnal cycles for 2011 included in (SI Fig. S4a) 626 
showed that neither MOFLUX_DroughtStress nor DroughtStress_ModelE altered the diurnal 627 
cycle in comparison to Default_ModelE. For 2011, all four simulations underestimate the diurnal 628 
cycle for MAY-AUG. Large improvements due to the applications of the Eq. (10a-10b) were not 629 
expected for 2011 as this algorithm was designed to target severe/extreme drought and not less 630 
severe drought conditions.   631 

 632 
During the severe drought period of 2012 at MOFLUX, the 𝛽𝛽 values fell below the 4th 633 

percentile thresholds for July-August, and isoprene drought stress was applied leading to 634 
reductions in the overestimation shown by Default_ModelE. DroughtStress_ModelE had a MB 635 

https://doi.org/10.5194/egusphere-2022-292
Preprint. Discussion started: 13 May 2022
c© Author(s) 2022. CC BY 4.0 License.



18 
 

≅0.42 mg/m2/hr and a NMB≅14.5%. DroughtStress_ModelE reduced overestimation by ~61.6% 636 
compared to Default_ModelE, which is a similar statistical improvement compared to 637 
MOFLUX_DroughtStress during the severe drought period as the parameterizations were 638 
designed in a similar manner. The scatterplots of isoprene emissions at the MOFLUX site for the 639 
summer of 2012 show the hourly correlation coefficient between observations and simulations 640 
increased from 0.68 in Default_ModelE to 0.73 in DroughtStress_ModelE (Fig. 2a,c). In Fig. 2 641 
changes are clearly seen in the cluster of 𝛽𝛽 values lower than 0.4 (shown by red oval) indicating 642 
a reduction in overestimation during severe drought. 643 

 644 

Figure 2. Scatterplots (a-c) show hourly simulated isoprene emissions compared to observed for MAY-SEP 2012 at the 645 
MOFLUX site and the units are mg/m2/hr of isoprene. Column 1-3 indicate simulations Default_ModelE, 646 
DroughtStress_MEGAN3_Jiang, and DroughtStress_ModelE respectively. The hourly averaged points are color coded by 647 
water stress.  648 

 649 
DroughtStress_ModelE with decreases in y-intercept, increasing correlation coefficient, and 650 
minor change in slope compared to Default_ModelE suggests it has better performance in 651 
simulating isoprene emissions during severe and extreme drought at MOFLUX during the 652 
summer of 2012. The daily correlation coefficient increased from 0.64 to 0.73 during severe 653 
drought in DroughtStress_ModelE (SI Fig. S5a,c). In addition, DroughtStress_ModelE 654 
reproduces the diurnal cycle of isoprene emission from MAY-SEP 2012 shown in (SI Fig. S4b) 655 
and corrects the overestimation of the Default_ModelE during the peak hours 10-15 LST. 656 
Overall, there is model agreement between measured and modeled fluxes in 657 
DroughtStress_ModelE indicating it is a suitable model-tuned parameterization for estimating 658 
isoprene emissions during severe drought at the MOFLUX site.  659 
 660 
4. Model response to drought parameterization: Global/Regional Evaluation of 661 

DroughtStress_ModelE 662 
The impact of applying isoprene drought stress in DroughtStress_ModelE globally on the 663 

annual emissions of isoprene from 2003-2013 is shown in Table 2. The yearly global reduction 664 
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of isoprene emissions ranges from ~ -0.9% to -4.3%. The global decadal average from 2003-665 
2013 is ~533 Tg yr-1 of isoprene in Default_ModelE and ~518 Tg yr-1 of isoprene in 666 
DroughtStress_ModelE, a reduction of 2.7%, which is equivalent to ~14.6 Tg yr-1 of isoprene. 667 
On a global scale these changes average under 3%, but for high isoprene emission regions such 668 
as the Southeast U.S. during drought periods there are larger impacts as shown below. 669 
 670 
Table 2. Global Annual Tg of Isoprene (2003-2013) 671 

Global Annual Isoprene Emissions (Tg) 

Year Default_ModelE DroughtStress_ModelE Diff (Tg 
Isoprene) % Diff 

2003 557.5 533.4 24.1 -4.3 
2004 557.6 535.4 22.2 -4.0 
2005 578.6 562.1 16.5 -2.9 
2006 537.5 522.9 14.6 -2.7 
2007 527.2 515.8 11.4 -2.2 
2008 499.2 494.9 4.3 -0.9 
2009 522.3 508.4 13.9 -2.7 
2010 542.5 526 16.5 -3.0 
2011 508.3 498.8 9.5 -1.9 
2012 516.1 503.4 12.7 -2.5 
2013 512.5 497.5 15 -2.9 

 672 
Figure 3 shows the global nine-year average of isoprene emissions and tropospheric HCHO 673 

column densities (ΩHCHO) of the lowest twenty layers of the model during JJA from 2005-674 
2013. Due to extremely limited in situ measurements of isoprene emissions during drought, 675 
satellite-retrieved ΩHCHO, the high yield oxidation product of isoprene, can be used as a proxy 676 
for isoprene emissions on the monthly scale (Zhu et al. 2016). Here we used ΩHCHO from OMI 677 
(Ozone Monitoring Instrument) on the Aura satellite starting in 2005. Level 3 total column 678 
weighted mean was regridded from its original resolution of 0.1○x0.1○ to match ModelE’s 679 
horizontal resolution of 2○x2.5○, and the daily data was aggregated to monthly mean 680 
(https://cmr.earthdata.nasa.gov/search/concepts/C1626121562-GES_DISC.html) (Chance 2019). 681 
OMI satellite data was filtered with the data_quality_flag, cloud fractions less than 0.3, solar 682 
zenith angles less than 60, and values within the range of −0.5 to 10 × 1016 molecules cm-2 were 683 
used (Zhu et al. 2016). A factor of 1.59 is applied to the OMI vertical column density (VCD) to 684 
correct the mean bias (Kaiser et al. 2018). Figures 3c,3f show the percent difference of isoprene 685 
emissions and ΩHCHO and shown in blue are the decreases in DroughtStress_ModelE globally. 686 
Figures 3d-e is OMI ΩHCHO and Default_ModelE simulated ΩHCHO. It is important to note 687 
the difference in scales as Default_ModelE is overestimating ΩHCHO in regions such as the SE 688 
U.S. for every June-July from the 2005-2013 period with a regional mean scale factor of ~0.56 689 
and ~0.80 when the SE boundary is extended westward to include portions of Texas. These 690 
overestimates in the SE U.S. are also reported by (Kaiser et al. 2018) where they saw a 50% 691 
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overestimate by GEOS-Chem with MEGAN2.1 simulations compared to SEAC4RS 692 
observations. While applying isoprene drought stress leads to reductions in ΩHCHO as shown 693 
by Fig. 3f, this reduction is limited to drought-stricken regions and periods and not designed to 694 
correct for the systematic biases of HCHO in ModelE. The overestimation of ΩHCHO in 695 
Default_ModelE will require further study and could be due to several reasons such as emissions 696 
error, incorrect spatial gradient of OH, oxidation, or incorrect application of the sink of glyoxal 697 
(Volkamer et al. 2007; Wells et al. 2020). This version of ModelE also lacks direct emissions of 698 
HCHO from anthropogenic sources, which may result in the lower vertical deposition, and, due 699 
to the short lifetime, the higher than observed HCHO column over portions of the U.S., and 700 
lower in other regions. 701 
 702 

Figure 3. Global nine-year average of JJA from 2005-2013 of isoprene emissions (first row) for Default_ModelE (a), 703 
DroughtStress_ModelE (b) and percent difference between DroughtStress_ModelE and Default_ModelE (c), and 704 
ΩHCHO (second row) for OMI (d), Default_ModelE (e) and percent difference between DroughtStress_ModelE and 705 
Default_ModelE (f). Note the different color scales between (d) and (e). 706 
 707 

Four global isoprene emission hotspots are selected to showcase the changes in isoprene 708 
emissions. The geographic regions are defined as East U.S. (Eastern U.S.: 65-105○W, 25-50○N), 709 
SA (Amazon: 40-80○W, 30○S-7○N), AF (Central Africa: 10-40○E, 15○S-10○N), and SE Asia 710 
(Southeast Asia: 100-150○E, 11○S-38○N) as shown in (SI Fig. S6). Figure 4 shows the 711 
relationship of dryness categorized by SPEI (Standardized Precipitation-Evapotranspiration 712 
Index) and relative difference in isoprene emissions between DroughtStress_ModelE and 713 
Default_ModelE from 2005-2013 for the growing season in the northern hemisphere and 714 
spring/summer in the southern hemisphere for the four global isoprene hotspots. SPEI is a 715 
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multiscalar climatic index that represents duration of drought in a region and is based on a 716 
climatic water balance approach which considers the impact of temperature and 717 
evapotranspiration (Beguería et al. 2010; Vicente-Serrano et al. 2010; Beguería et al. 2014). To 718 
identify the extent of drought impacts and differentiate from normal variability in the 719 
hydrological cycle, one-month SPEI is used to identify drought periods of duration extending 720 
beyond a single month. Default_ModelE simulation variables were used to calculate modeled 721 
SPEI at the resolution of 2◦×2.5◦. Positive SPEI typically indicates wet conditions and dry 722 
conditions are indicated by negative values. Drought conditions are indicated by SPEI ≤ -1.3, 723 
normal conditions -0.5 ≤ SPEI ≤ 0.5, and wet conditions SPEI ≥ 1.3 following the (Wang et al. 724 
2017) approach. For the four regions the average percent difference in isoprene emissions for 725 
March-October for northern hemisphere regions and September-February for southern 726 
hemisphere regions from 2005-2013 is ~ -2.62% for the East U.S., the Amazon (SA) ~ -3.01%, 727 
Central Africa (AF) ~ -2.64%, and Southeast Asia (SE Asia) ~ -3.10%. The scatterplots for the 728 
four hotspots show decreasing isoprene emissions across all dryness conditions. The decreases in 729 
isoprene emissions for the four regions are not seen exclusively when SPEI indicates dry 730 
conditions, which indicates simulated water stress as shown by model does not align exactly with 731 
SPEI drought indicated conditions. 732 

 733 
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Figure 4. The scatterplots of four global isoprene hotspot and their relative differences in isoprene emissions (mg/m2/hr 734 
isoprene) in relationship to simulated SPEI from 2005-2013 during the growing season is shown. The four regions of focus 735 
are Eastern U.S. (East), Amazon (SA), Central Africa (AF), and Southeast Asia (SE Asia). The regions of East and SE 736 
Asia are in the northern hemisphere and the growing seasons is from (March-October). The hotspots of SA and AF are in 737 
the southern hemisphere and the growing season is during spring/summer (September-February).  738 

 739 
Narrowing the focus from global to the U.S., to illustrate the long-term difference between 740 

DroughtStress_ModelE and Default_ModelE, a timeseries from 2005-2013 is shown in Fig. 5 of 741 
the continental U.S. for two regions West (105-125○W, 25-50○N) and East (65-105○W, 25-50○N) 742 
indicating the percent difference in ΩHCHO and isoprene emissions corresponding to percent 743 
area that is dry (SPEI < -0.5). The map showing the regions West and East is located in (SI Fig. 744 
S7). The western U.S. (West) despite having a much smaller magnitude of isoprene emissions 745 
does see reductions in isoprene which is mimicked on a lesser scale by reductions in ΩHCHO. 746 
For the Eastern U.S. (East) there are clear decreases in isoprene emissions and ΩHCHO during 747 
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the droughts of 2007, 2011, and 2012. Focusing on the East timeseries, the maximum percent 748 
difference between simulations DroughtStress_ModelE and Default_ModelE for isoprene 749 
occurred from AUG-OCT 2007 approximately -4.5%, -7.4%, and -4.6% with corresponding 750 
decreases in ΩHCHO of ~ -4.1%, -5.4%, and -3.6% respectively. For 2011 the maximum percent 751 
difference in isoprene emissions occurred SEP-NOV and was ~ -9.0%, -8.7%, -8.3% and the 752 
percent difference in ΩHCHO was ~ -5.9%, -3.6%, and -2.6%. For 2012 the maximum percent 753 
difference occurred from AUG-OCT and the difference in isoprene was ~ -5.1%, -8.8%, and -754 
10.8% and the difference in ΩHCHO was ~ -2.8%, -4.0%, and -2.7%.  755 
 756 
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Figure 5. The percent difference of ΩHCHO and isoprene emissions from 2005-2013 in relationship to percent area dry 757 
for two regions of the U.S. West (top figure) and East (bottom figure) is shown. Percent area dry is indicated by SPEI < -758 
0.5. The first grey shaded rectangle indicates the time period of the 2011 drought at MOFLUX from June to August 2011. 759 
The second grey shaded rectangle indicates the 2012 severe drought at MOFLUX from July 17 through August. These 760 
time periods are added to the timeseries to highlight when they occurred. 761 
 762 

Figure 6 displays spatial maps of ΩHCHO during the summer (JJA) of three drought years 763 
2007, 2011, and 2012. The summers of 2007 and 2011 were drought periods in the U.S. with 764 
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2007 being a less severe drought than 2011 in the SE U.S. The drought of 2012 was focused 765 
more on the Great Plains (GP) region. The spatial maps show the reduction in ΩHCHO in panels 766 
6c, 6f, and 6i due to the inclusion of isoprene drought stress. Based on the spatial differences in 767 
ΩHCHO, three regions of the greatest reduction in percent difference in ΩHCHO column are 768 
selected for the three drought years of 2007, 2011, and 2012, respectively. The three geographic 769 
regions are shown in Fig. 7 and defined as SE1(Southeast Region1: 75-93○W, 31-39○N), SE2 770 
(Southeast Region2: 75-101○W, 29-37○N), and GP (Great Plains: 89-100○W, 33-43○N). During 771 
JJA for 2007 the SE1 region has an average percent difference in ΩHCHO of -6.46%, during JJA 772 
2011 the SE2 region has a percent difference of -7.58%, and the GP region during JJA 2012 has 773 
average percent difference of -3.29%. 774 

 775 

Figure 6. The ΩHCHO column in units of molecules/cm2 for OMI, Default_ModelE, and the percent difference between 776 
DroughtStress_ModelE and Default_ModelE across the U.S. during the summer of drought years 2007, 2011, and 2012 is 777 
shown. X indicates the location of the MOFLUX site on the spatial maps. 778 
 779 

Figure 7 shows the timeseries for the three regions of SE1 during 2007, SE2 for 2011, and 780 
GP for 2012 drought. In the SE1 region during the period of maximum isoprene difference from 781 
AUG-OCT 2007 shaded in grey on the timeseries, DroughtStress_ModelE reduced NMB of 782 
ΩHCHO by ~19.3%. The isoprene percent difference for this period was approximately -9.0%, -783 
17.5%, and -13.2%. The ΩHCHO percent difference for the SE1 region from AUG-OCT 2007 784 
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was approximately -8.4%, -12.1%, and -7.3%. In the SE2 region the maximum isoprene 785 
difference period for AUG-NOV 2011, DroughtStress_ModelE decreased ΩHCHO NMB by 786 
~15.3%. The monthly isoprene percent difference for SE2 during this period was approximately 787 
-16.1%, -18.6%, -14.7%, and -13.9% while the ΩHCHO percent difference was ~ -10.0%, -788 
11.2%, -6.6%, and -4.6% respectively. In the GP region during SEP-NOV 2012, the isoprene 789 
percent difference for GP during SEP-NOV 2012 was approximately -5.4%, -14.2%, and -11.1% 790 
and the ΩHCHO percent difference was ~ -2.8%, -2.4%, and -0.4% respectively. The small 791 
change in HCHO column despite estimated larger changes in isoprene emissions is probably due 792 
to the suppression of oxidants such as hydroxyl radicals (OH) by isoprene under low-NOx 793 
conditions in the GP region (Wells et al. 2020).   794 

 795 
It is well established that biogenic isoprene, the most abundant BVOC, is a highly reactive 796 

species. In the presence of nitrogen oxides (NOx), BVOCs contribute to the formation of 797 
tropospheric O3. Oxidation of BVOCs also produces secondary organic aerosols, a major 798 
component of fine particulate matter (PM2.5). PM2.5 and O3 have been previously linked to 799 
change during drought with adverse effects on air quality (Wang et al. 2017). It is thus important 800 
to show the impact of drought-induced changes in isoprene emissions on O3 and PM2.5. The 801 
scatterplots in Fig. 7 show the relationship between observed and simulated O3 during the 802 
drought period of maximum percent difference highlighted on the timeseries for the 803 
corresponding region. PM2.5 comparison to observed is not shown here due to Default_ModelE 804 
underestimating PM2.5 across all three regions SE1, SE2, and GP, and thus no improvements 805 
were seen due to the inclusions of DroughtStress_ModelE. The observational O3 data is a 806 
combination of hourly data from the EPA-AQS (U.S. Environmental Protection Agency (EPA) 807 
Air Quality System), CASTNET (Clean Air Status and Trends Network), and NAPS (National 808 
Air Pollution Surveillance) networks. The observational O3 datasets was gridded and interpolated 809 
for comparison to a gridded model (Schnell et al. 2014). The hourly gridded observations were 810 
then averaged onto a monthly scale for comparison with model results. Shown in Fig. 7 the SE1 811 
region saw improvement in O3 from AUG-OCT 2007, where the correlation coefficient (R) 812 
increased from 0.51 in Default_ModelE to 0.60 in DroughtStress_ModelE and the slope of the 813 
linear regression also improved significantly. The SE2 region from AUG-NOV 2011 saw a slight 814 
improvement in the slope of the linear regression but no change in R. The GP region from SEP-815 
NOV 2012 saw a slight improvement in R but no change in the correlation slope between 816 
Default_ModelE and DroughtStress_ModelE. During non-drought periods of 2008, 2010, and 817 
2013 compared to their respective drought periods of 2007, 2011, and 2012 there was no large 818 
changes in O3 or ΩHCHO statistics as expected since isoprene drought stress is only supposed to 819 
effect drought periods. During the drought periods of 2007, 2011, and 2012 the model predicts 820 
higher mean O3 and ΩHCHO than the non-drought years. The analysis of these drought years 821 
and periods of the greatest percent difference leads to the conclusion of isoprene drought stress 822 
improves ΩHCHO simulation and O3 simulation during drought periods.  823 
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 824 

Figure 7. The timeseries from 2005-2013 of percent area dry on y-axis shown in red and percent difference in ΩHCHO 825 
(blue) and isoprene emissions (black) between DroughtStress_ModelE and Default_ModelE for the 3 regions SE1, SE2, 826 
and GP on the second y-axis is shown. Shaded in grey are the time periods of maximum percent difference of isoprene 827 
emissions during the drought years. The scatterplots show the relationship between observed O3 (ppbv) and simulated O3 828 
during the shaded grey time periods on the timeseries for Default_ModelE in black and DroughtStress_ModelE in red for 829 
the SE1 during 2007, SE2 during 2011, and GP during 2012. Maps showing the geographic regions are inset into the 830 
scatterplots. The regions spatial extent is based on region of maximum percent difference in Fig. 6c,f,i.  831 

 832 
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5. Discussion and conclusions 833 
Drought is a hydroclimatic extreme that causes perturbations to the terrestrial biosphere. As a 834 

stressor for vegetation, drought can induce changes to vegetative emissions known as BVOCs 835 
(Biogenic Volatile Organic Compounds). Biogenic isoprene represents about half of total BVOC 836 
emissions and is a precursor to ozone (O3) and secondary organic aerosol (SOA), both of which 837 
are climate forcing species. In order to simulate isoprene flux during drought and the feedbacks 838 
associated with these complex BVOC-chemistry-climate interactions, we implemented the 839 
MEGAN (Model of Emissions of Gases and Aerosols from Nature) isoprene drought stress 840 
parameterization, 𝑦𝑦𝑑𝑑, into NASA GISS (Goddard Institute of Space Studies) ModelE, a leading 841 
Earth System Model. Four online transient simulations were performed from 2003-2013, a 842 
Default_ModelE without 𝑦𝑦𝑑𝑑, DroughtStress_MEGAN3_Jiang using the parameterization 843 
developed by (Jiang et al. 2018), and a model-tuned parameterization developed for ModelE 844 
based on the MOFLUX Ameriflux site observations (MOFLUX_DroughtStress). The fourth 845 
simulation implemented isoprene drought stress using a grid-by-grid approach to capture 846 
regional changes in isoprene during drought known as DroughtStress_ModelE. The model-tuned 847 
parameterization (MOFLUX_DroughtStress and DroughtStress_ModelE) was developed using 848 
an offline model of emissions to create a model specific empirical variable and water stress 849 
threshold, since key variables Vc,max (photosynthetic parameter) and water stress (𝛽𝛽) are 850 
parameterized differently across models. Observational measurements of isoprene flux during 851 
the severe drought of 2012 at the MOFLUX site were used for validation of parameterization. It 852 
was found that DroughtStress_ModelE corrects the overestimation of emissions during the phase 853 
of severe drought at MOFLUX. Previously, this reduction during drought was not included in 854 
BVOC emission models due to the lack of a drought stress term. Globally the decadal average 855 
from 2003-2013 in Default_ModelE was ~533 Tg of isoprene and ~518 Tg of isoprene in 856 
DroughtStress_ModelE. DroughtStress_ModelE was validated using observational satellite 857 
ΩHCHO column from the Ozone Monitoring Instrument (OMI) and using O3 observations 858 
across regions of the U.S. to examine the effect of drought on atmospheric composition. It was 859 
found that the inclusion of isoprene drought stress reduced the overestimation of ΩHCHO in 860 
Default_ModelE during the 2007 and 2011 southeastern U.S. droughts and led to improvements 861 
in simulated O3 during drought periods. The inclusions of a grid specific percentile isoprene 862 
drought stress is model specific and the reduction of isoprene seen in models will depend on each 863 
models mean bias and parameterizations of Vc,max and water stress. ModelE’s modest signal can 864 
be explained by underestimating isoprene emissions during the early stages of drought and by 865 
not having a high mean bias during severe drought. 866 

 867 
Our analysis of isoprene drought stress leads to the recommendation that each model should 868 

arrive at a tuning of their water stress parameters based on the magnitude of water stress 869 
occurring during simulated drought and a unique alpha should be derived. Each land surface 870 
model (LSM) has a unique hydrology scheme (with different soil layering approaches and soil 871 
physics treatments), and any variables that depend on response to soil moisture -- whether 872 
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chemical, physical, or biological -- must be tuned due to the fact that soil moisture in LSMs is 873 
being averaged over a grid cell whereas in nature soil moisture is heterogeneous at spatial scales 874 
down to the plot level. The resulting parameterization, since it relies on model specific variables, 875 
would be well suited for future or historical simulations. The current approach also requires 876 
vegetation-coupled land surface models that have photosynthesis models that use Vc,max and 𝛽𝛽, 877 
and many current general circulation models (GCM) with less process-based vegetation schemes 878 
do not have these variables readily available.  879 

 880 
Besides tuning responses to drought, the light response of isoprene emissions may not be 881 

well captured in a simple factor like the PCEEA. Vegetation models differ in their approach to 882 
leaf-to-canopy scaling. Some ESMs vegetation models have more sophisticated canopy radiative 883 
transfer submodels that capture layering and sunlit/shaded leaf area. Future isoprene modeling 884 
investigations could make use of the ability of these canopy models to calculate isoprene 885 
emissions with leaf-level responses to the heterogeneous light in canopies. Unger et al. (2013) 886 
implemented such a leaf-to-canopy scaling of isoprene emissions previously in the Ent TBM 887 
through a leaf-level isoprene model as a function of leaf-level gross primary production (GPP). 888 
Since the Ent TBM scales stomatal conductance with drought stress, and hence also GPP, this 889 
intrinsically results in isoprene emissions responsiveness to drought stress. The main challenge 890 
will be to find consensus about the fundamental processed-based physics of isoprene emissions 891 
at the leaf level. The method of Unger et al. (2013) was not used for this paper in order to 892 
preserve the MEGAN3 features and test this particular isoprene drought stress parameterization.  893 

 894 
A limitation of our tuning method for applying isoprene drought stress is that there does not 895 

appear to be a strong relationship between SPEI and water stress, which makes it challenging to 896 
determine when the algorithm should be applied during severe drought. This is why the current 897 
application is limited and based on the single MOFLUX site where water stress values and the 898 
corresponding decreases of isoprene during severe drought were observed. Possible future work 899 
of the satellite Cross-track Infrared Sound (CrIS) isoprene measurements (Wells et al. 2020) 900 
may be used to develop a drought algorithm that is not based on a single site and provide a more 901 
dynamic drought stress algorithm for capturing the decrease of emissions during severe drought. 902 
The reduction of isoprene in the model also depends on how dry (low values of water stress) the 903 
model is. If the model is too dry or if isoprene emissions are already overestimated there will be 904 
larger reductions in isoprene than reported here in ModelE, with larger feedbacks on O3, SOA, 905 
and ΩHCHO column. Models that are not severely overestimating during severe drought will 906 
show modest reductions like ModelE. It is important to note that the application of isoprene 907 
drought stress in this paper is designed to reduce emissions during severe drought. Future work 908 
could focus more on the parameterization of isoprene emissions during mild or early stages of 909 
drought when isoprene emissions might be increasing and as we see in ModelE the model 910 
underestimates during this period. Overall, the strength of the reduction signal of isoprene 911 
depends on the model, and for models overestimating isoprene the application of isoprene 912 
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drought stress into the model could improve model simulations significantly. Recent published 913 
work has also brought up the importance of drought duration as an important factor to consider 914 
in further isoprene drought stress parameterization (Li et al. 2022). Future work on developing 915 
drought parameterizations should focus on capturing the increasing signal of isoprene at the start 916 
of drought, the reduction signal during severe drought, while also considering a time component 917 
because eventually plants can reach a stage of emission cessation.  918 

 919 
In summary, this paper demonstrates why isoprene response to drought stress is model 920 

specific and should be tuned on a model-by-model basis, and details a new method for 921 
implementing isoprene drought stress to reduce isoprene emissions during severe drought in 922 
ModelE. This new method uses a grid-by-grid percentile threshold based on simulated water 923 
stress and can be used by many models to show regionals changes in isoprene emissions during 924 
severe drought and their associated feedbacks on ΩHCHO and O3. With more severe droughts 925 
predicted in the United States for the 21st century (Dai 2013), this is a first look into model 926 
performance for analyzing how BVOC emissions change during drought conditions using GISS 927 
ModelE for regions in the U.S. 928 
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